A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90
نویسندگان
چکیده
P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmd(mdx) mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death. P2RX7-evoked autophagy was triggered by LP formation but not Ca(2+) influx or MAPK1-MAPK3 phosphorylation, 2 canonical P2RX7-evoked signals. Phosphoproteomics, protein expression inference and signaling pathway prediction analysis of P2RX7 signaling mediators pointed to HSPA2 and HSP90 proteins. Indeed, specific HSP90 inhibitors prevented LP formation, LC3-II accumulation, and cell death in myoblasts and myotubes but not in macrophages. Pharmacological blockade or genetic ablation of p2rx7 also proved protective against ATP-induced death of muscle cells, as did inhibition of autophagy with 3-MA. The functional significance of the P2RX7 LP is one of the great unknowns of purinergic signaling. Our data demonstrate a novel outcome--autophagy--and show that molecules entering through the LP can be targeted to phagophores. Moreover, we show that in muscles but not in macrophages, autophagy is needed for the formation of this LP. Given that P2RX7-dependent LP and HSP90 are critically interacting in the ATP-evoked autophagic death of dystrophic muscles, treatments targeting this axis could be of therapeutic benefit in this debilitating and incurable form of muscular dystrophy.
منابع مشابه
Dystrophin: The dead calm of a dogma
Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease leading to severe disability and death of young men. Current interventions are palliative as no treatment improves the long-term outcome. Therefore, new therapeutic modalities with translational potential are urgently needed and abnormalities downstream from the absence of dystrophin are realistic targets. It has been...
متن کاملA novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملPlasma Membrane Cholesterol as a Regulator of Human and Rodent P2X7 Receptor Activation and Sensitization*
P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor ch...
متن کاملSilymarin inhibits Toll-like receptor 8 gene expression and apoptosis in Ramos cancer cell line
Objective: Silymarin is a herbal extract containing flavonolignans, and it has inhibitory effects against the growth of different cancer cell lines by inducing apoptosis. Toll-like receptors are suggested as a novel and attractive target to treat cancer. The current study aimed at examining the mechanism of silymarin-induced apoptosis in Ramos cells and investigating its effect...
متن کاملSynthesis and Experimental-Modelling Evaluation of Nanoparticles Movements by Novel Surfactant on Water Injection: An Approach on Mechanical Formation Damage Control and Pore Size Distribution
Water injection is used as a widespread IOR/EOR method and promising formation damages (especially mechanical ones) is a crucial challenge in the near-wellbore of injection wells. The magnesium oxide (MgO) NanoParticles (NPs) considered in the article underwater flooding experiment tests to monitor the promising mechanical formation damage (size exclusion) in lab mechanistic scale include m...
متن کامل